Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
BMC Med Educ ; 24(1): 386, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589890

RESUMO

BACKGROUND: Medical students face a heavy burden as they are tasked with acquiring a vast amount of medical knowledge within a limited time frame. Self-directed learning (SDL) has become crucial for efficient and ongoing learning among medical students. However, effective ways to foster SDL ability among Chinese medical students are lacking, and limited studies have identified factors that impact the SDL ability of medical students. This makes it challenging for educators to develop targeted strategies to improve students' SDL ability. This study aims to assess SDL ability among Chinese medical students and examine the effects of career calling and teaching competencies on SDL ability, as well as the possible mechanisms linking them. METHODS: Data were collected from 3614 respondents (effective response rate = 60.11%) using cross-sectional online questionnaires and analyzed using IBM SPSS Statistics 22.0. The questionnaire comprised a Demographic Characteristics Questionnaire, Self-directed Learning Ability Scale (Cronbach's alpha = 0.962), Teaching Competencies Scale, and Career Calling Scale. RESULTS: The average SDL ability score of Chinese medical students was 3.68 ± 0.56, indicating a moderate level of SDL ability. The six factors of the Self-directed Learning Ability Scale-self-reflection, ability to use learning methods, ability to set study plans, ability to set studying objectives, ability to adjust psychological state, and willpower in studying-accounted for 12.90%, 12.89%, 12.39%, 11.94%, 11.34%, and 8.67% of the variance, respectively. Furthermore, career calling was positively associated with SDL learning ability (ß = 0.295, p < 0.001), and SDL learning ability was positively associated with teaching competencies (ß = 0.191, p < 0.01). Simple slope analysis showed that when the level of teaching competencies was higher, the influence of career calling on SDL ability was stronger. CONCLUSIONS: Chinese medical students' SDL ability has room for improvement. Medical students could strengthen their willpower in studying by setting milestones goals with rewards, which could inspire their motivation for the next goals. Teachers should guide students to learn experience to improve students' reflective ability. Educators play a crucial role in bridging the gap between career calling education and SDL ability enhancement, highlighting the significance of optimal teaching competencies. Colleges should focus on strengthening teachers' sense of career calling and teaching competencies.


Assuntos
Educação Médica , Estudantes de Medicina , Humanos , Estudos Transversais , Estudantes de Medicina/psicologia , Currículo , China
2.
Sci Total Environ ; 927: 172165, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575024

RESUMO

8:2 fluorotelomer sulfonic acid (8:2 FTSA) has been commonly detected in the environment, but its behaviors in plants are not sufficiently known. Here, the regular and multi-omics analyses were used to comprehensively investigate the bioaccumulation, biotransformation, and toxicity of 8:2 FTSA in Arabidopsis thaliana. Our results demonstrated that 8:2 FTSA was taken up by A. thaliana roots and translocated to leaves, stems, flowers, and seeds. 8:2 FTSA could be successfully biotransformed to several intermediates and stable perfluorocarboxylic acids (PFCAs) catalyzed by plant enzymes. The plant revealed significant growth inhibition and oxidative damage under 8:2 FTSA exposure. Metabolomics analysis showed that 8:2 FTSA affected the porphyrin and secondary metabolisms, resulting in the promotion of plant photosynthesis and antioxidant capacity. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were related to transformation and transport processes. Integrative transcriptomic and metabolomic analysis revealed that DEGs and differentially expressed metabolites (DEMs) in plants were predominantly enriched in the carbohydrate metabolism, amino acid metabolism, and lipid metabolism pathways, resulting in greater energy consumption, generation of more nonenzymatic antioxidants, alteration of the cellular membrane composition, and inhibition of plant development. This study provides the first insights into the molecular mechanisms of 8:2 FTSA stress response in plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Biotransformação , Ácidos Sulfônicos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Metabolômica
4.
Acta Biomater ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615810

RESUMO

The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.

5.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611163

RESUMO

Recently, the application of cryogenic hoses in the field of cryogenic media has become a hot topic, especially in the industry of offshore liquefied natural gas and aerospace field. However, the structure of cryogenic hoses is complex, and reasonable structural properties are required due to the harsh working conditions. There is still plenty of scope for further development to improve the performance in all aspects. In this paper, the current development status of cryogenic hoses for liquefied natural gas (LNG) transportation is reviewed first, including the types, manufacturers, structural forms, performance, and key technical challenges. And then, the recent progress and prospect of cryogenic hoses for cryogenic liquid transportation (such as LNG and liquid oxygen) are summarized, including structure design, low-temperature resistant polymers, liquid oxygen compatible polymers, and leakage monitoring technologies. This paper provides a comprehensive overview of the research development and application of cryogenic hoses. Moreover, future research directions have been proposed to facilitate its practical applications in aerospace.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38603463

RESUMO

The inadequate electrical conductivity of metal sulfides, along with their tendency to agglomerate, has hindered their use in energy storage and catalysis. The construction of a heterojunction can ameliorate these deficiencies to some extent. In this paper, MnS-BaS heterojunction catalysts were prepared by a hydrothermal method, which is a simple and inexpensive process. The MnS-BaS heterojunction catalysts exhibited superior performance owing to the strong synergistic interaction between MnS and BaS. Density functional theory (DFT) calculations reveal strong interactions at the heterojunction interface and significant electron transfer between MnS and BaS, which further modulates the electronic structure of Mn. The elevation of the center of the d-band enhances the adsorption of oxygen and oxygen-containing intermediates on the catalyst, thus promoting the oxygen reduction reaction (ORR). The practical application of MnS-BaS catalysts was tested by assembling zinc-air batteries. This study provides a rational strategy for designing transition metal catalysts that are efficient and low cost.

7.
Water Res ; 256: 121590, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38631241

RESUMO

The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.

8.
PLoS One ; 19(4): e0301703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574094

RESUMO

BACKGROUND AND OBJECTIVES: The potential association between rosacea and a heightened prevalence of Helicobacter pylori (HP) infection has been previously suggested. However, existing studies offer inconsistent results. This systematic review and meta-analysis aimed to elucidate the relationship between rosacea and HP infection. METHODS: We conducted comprehensive searches of PubMed, Embase, and Web of Science databases to identify relevant observational studies for our investigation. We utilized the random-effects model to aggregate the data to address the potential influence of heterogeneity among the studies on the outcome. RESULTS: Our analysis incorporated twenty-five datasets from 23 case-control and cross-sectional studies, encompassing 51,054 rosacea patients and 4,709,074 controls without skin disease. The pooled results revealed a significantly higher prevalence of HP infection in individuals with rosacea compared to controls (odds ratio [OR]: 1.51, 95% confidence interval [CI]: 1.17-1.95, p<0.001; I2 = 79%). Subgroup analysis indicated an increased prevalence of HP infection in rosacea studies that utilized one (OR: 1.72, 95% CI: 1.11-2.66, p = 0.02; I2 = 76%) or more tests for HP infection (OR: 2.26, 95% CI: 1.29-3.98, p = 0.005; I2 = 56%). However, this association was not observed in population-based studies that determined HP infection based on prescription records for HP eradication drugs (OR: 0.90, 95% CI: 0.76-1.07, p = 0.024; I2 = 54%). CONCLUSION: Rosacea may be significantly associated with a higher prevalence of HP infection. High-quality prospective studies with delicately controlled confounding factors are needed to determine if HP infection is a risk factor for rosacea.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Rosácea , Humanos , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Estudos Transversais , Estudos Prospectivos , Rosácea/complicações , Rosácea/epidemiologia
9.
Heliyon ; 10(5): e26558, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455543

RESUMO

Most of microbe cells spend the majority of their times in quiescence due to unfavorable environmental conditions. The study of this dominant state is crucial for understanding the basic cell physiology. Retained recovery ability is a critical property of quiescent cells, which consists of two features: how long the cells can survive (the survivability) and how fast they can recover (the recovery activity). While the survivability has been extensively studied under the background of chronological aging, how the recovery activity depends on the quiescent time and what factors influence its dynamics have not been addressed quantitatively. In this work, we systematically quantified both the survivability and the recovery activity of long-lived quiescent fission yeast cells at the single cell level under various nutrient conditions. It provides the most profound evolutionary dynamics of quiescent cell regeneration ability described to date. We found that the single cell recovery time linearly increased with the starvation time before the survivability significantly declined. This linearity was robust under various nutrient conditions and the recovery speed was predetermined by the initial nutrient condition. Transcriptome profiling further revealed that quiescence states under different nutrient conditions evolve in a common trajectory but with different speed. Our results demonstrated that cellular quiescence has a continuous spectrum of depths and its physiology is greatly influenced by environmental conditions.

10.
J Hazard Mater ; 469: 134095, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521035

RESUMO

Biogenic manganese oxides (BioMnOx) produced by Mn(II)-oxidizing bacteria (MnOB) have garnered considerable attention for their exceptional adsorption and oxidation capabilities. However, previous studies have predominantly focused on the role of BioMnOx, neglecting substantial investigation into MnOB themselves. Meanwhile, whether the xenobiotics could support the growth of MnOB as the sole carbon source remains uncertain. In this study, we isolated a strain termed Pseudomonas sp. AN-1, capable of utilizing phenol as the sole carbon source. The degradation of phenol took precedence over the accumulation of BioMnOx. In the presence of 100 mg L-1 phenol and 100 µM Mn(II), phenol was entirely degraded within 20 h, while Mn(II) was completely oxidized within 30 h. However, at the higher phenol concentration (500 mg L-1), phenol degradation reduced to 32% and Mn(II) oxidation did not appear to occur. TOC determination confirmed the ability of strain AN-1 to mineralize phenol. Based on the genomic and proteomics studies, the Mn(II) oxidation and phenol mineralization mechanism of strain AN-1 was further confirmed. Proteome analysis revealed down-regulation of proteins associated with Mn(II) oxidation, including MnxG and McoA, with increasing phenol concentration. Notably, this study observed for the first time that the expression of Mn(II) oxidation proteins is modulated by the concentration of carbon sources. This work provides new insight into the interaction between xenobiotics and MnOB, thus revealing the complexity of biogeochemical cycles of Mn and C.


Assuntos
Fenol , Pseudomonas , Fenol/metabolismo , Pseudomonas/metabolismo , Xenobióticos/metabolismo , Óxidos/metabolismo , Oxirredução , Compostos de Manganês/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
11.
Sci Total Environ ; 923: 171315, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431177

RESUMO

Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.


Assuntos
Chlorella , Microalgas , Purificação da Água , Águas Residuárias , Microalgas/metabolismo , Esgotos/química , Proteínas/metabolismo , Bactérias , Purificação da Água/métodos , Ferro/metabolismo , Biomassa , Nitrogênio/metabolismo
13.
Front Immunol ; 15: 1322214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318192

RESUMO

Thymus is the main immune organ which is responsible for the production of self-tolerant and functional T cells, but it shrinks rapidly with age after birth. Although studies have researched thymus development and involution in mouse, the critical regulators that arise with age in human thymus remain unclear. We collected public human single-cell transcriptomic sequencing (scRNA-seq) datasets containing 350,678 cells from 36 samples, integrated them as a cell atlas of human thymus. Clinical samples were collected and experiments were performed for validation. We found early thymocyte-specific signaling and regulons which played roles in thymocyte migration, proliferation, apoptosis and differentiation. Nevertheless, signaling patterns including number, strength and path completely changed during aging, Transcription factors (FOXC1, MXI1, KLF9, NFIL3) and their target gene, IGFBP5, were resolved and up-regulated in aging thymus and involved in promoting epithelial-mesenchymal transition (EMT), responding to steroid and adipogenesis process of thymic epithelial cell (TECs). Furthermore, we validated that IGFBP5 protein increased at TECs and Hassall's corpuscle in both human and mouse aging thymus and knockdown of IGFBP5 significantly increased the expression of proliferation-related genes in thymocytes. Collectively, we systematically explored cell-cell communications and regulons of early thymocytes as well as age-related differences in human thymus by using both bioinformatic and experimental verification, indicating IGFBP5 as a functional marker of thymic involution and providing new insights into the mechanisms of thymus involution.


Assuntos
Envelhecimento , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Timócitos , Timo , Humanos , Envelhecimento/genética , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Timócitos/metabolismo , Timo/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
14.
Mar Pollut Bull ; 199: 115984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176162

RESUMO

Soil microbes play vital roles in estuarine wetlands. Understanding the soil bacterial community structure and function profiles is essential to reveal the ecological functions of microbes in estuarine wetlands. Herein, soil samples were collected from Liao River estuarine wetland, Northeast China, along the river to the estuarine mouth, and soil bacterial communities were explored. Results showed that soil physiochemical properties, bacterial community structure and functions exhibited distinct variations influenced by geographical location. Bacterial phyla in soils were dominated by Proteobacteria and Bacteroidetes, while Gillisia and Woeseia were the predominant genera. Soil pH, electrical conductivity and nitrogen-related nutrients were the important factors affecting bacterial community structure. Based on PICRUSt prediction, the genes related to metabolism of nitrogen, sulfur and methane showed spatial distribution patterns, and the abundances of most biomarker genes increased as the distance from estuarine mouth extended. These findings could enrich the understanding of soil microbiome in estuarine wetlands.


Assuntos
Solo , Áreas Alagadas , Solo/química , Rios , Bactérias/genética , China , Nitrogênio , Microbiologia do Solo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167007, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185063

RESUMO

The development of nonalcoholic fatty liver disease (NAFLD) may worsen due to chronic stress or prolonged use of glucocorticoids. Glycerol-3-phosphate acyltransferase 3 (GPAT3), has a function in obesity and serves as a key rate-limiting enzyme that regulates triglyceride synthesis. However, the precise impact of GPAT3 on corticosterone (CORT)-induced NAFLD and its underlying molecular mechanism remain unclear. For our in vivo experiments, we utilized male and female mice that were GPAT3-/- and wild type (WT) and treated them with CORT for a duration of 4 weeks. In our in vitro experiments, we transfected AML12 cells with GPAT3 siRNA and subsequently treated them with CORT. Under CORT-treated conditions, the absence of GPAT3 greatly improved obesity and hepatic steatosis while enhancing the expression of genes involved in fatty acid oxidation, as evidenced by our findings. In addition, the deletion of GPAT3 significantly inhibited the production of reactive oxygen species (ROS), increased the expression of antioxidant genes, and recovered the mitochondrial membrane potential in AML12 cells treated with CORT. In terms of mechanism, the absence of GPAT3 encouraged the activation of the glycogen synthase kinase 3ß (GSK3ß)/nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway, which served as a defense mechanism against liver fat accumulation and oxidative stress. Furthermore, GPAT3 expression was directly controlled at the transcriptional level by the glucocorticoid receptor (GR). Collectively, our findings suggest that GPAT3 deletion significantly alleviated hepatic steatosis and oxidative stress through promoting GSK3ß/Nrf2 signaling pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Corticosterona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse Oxidativo , Obesidade/tratamento farmacológico , Obesidade/genética , Aciltransferases/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo
16.
Soft Matter ; 20(3): 640-650, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164001

RESUMO

Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material polyvinyl alcohol (PVA) as the primary component, with phytic acid (PA) and tannic acid (TA) as reinforcing phases, to create a multifunctional, high-strength "green" hydrogel. Through the multiple complexations of two bio-enhancing phases with the PVA main chain, this hydrogel attains ultra-high tensile strength (9.341 MPa), substantial toughness (4.262 MJ m-3), and extensive fracture strain (> 1000%), making it a representative with both mechanical performance and antibacterial capabilities. Additionally, it exhibits a low strain sensing limit (0.5%) and excellent durability (500 cycles under 50% strain). This work introduces a novel strategy of combining biodegradable materials with biomass to fabricate multifunctional hydrogels suitable for human motion monitoring and 2D pressure distribution.


Assuntos
Antibacterianos , Ácido Fítico , Polifenóis , Humanos , Condutividade Elétrica , Hidrogéis , Álcool de Polivinil
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123952, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295594

RESUMO

Carbon dots (CDs) possess the merits such as energy efficiency, green sustainability and environmental friendliness, comparing with top-down synthesis methods at higher pressure or temperature condition. Here, a variety of emission states CDs were prepared by using the method of room temperature chemistry by selecting green raw materials such as glucose, p-phthalaldehyde and m-diethylaminophenol. The luminescence mechanism was studied in detail. The luminescent center of blue emitting carbon dots (B-CDs) and green emitting carbon dots (G-CDs) is CO bond, and the increased contents of CO bond lead to the creation of new energy levels between the energy gaps of HOMO and LUMO levels, which results in the red shift of luminescence wavelength. The emission state of red emitting carbon dots (R-CDs) is due to the formation of amino N. In addition, R-CDs have an exclusive respond to dopamine (DA) and are regarded as good fluorescent probes for detecting DA. Furthermore, the addition of ascorbic acid (AA) restores the luminescence of R-CDs quenched by DA. Therefore, R-CDs has great application potential as a selective fluorescent "turn on-off" probe.

18.
Acta Cir Bras ; 38: e386223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055397

RESUMO

PURPOSE: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. METHODS: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. RESULTS: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. CONCLUSIONS: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Assuntos
NF-kappa B , Pré-Eclâmpsia , Gravidez , Camundongos , Feminino , Animais , Humanos , NF-kappa B/metabolismo , Pré-Eclâmpsia/metabolismo , Repetições WD40 , Placenta , Trofoblastos/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Clin Cosmet Investig Dermatol ; 16: 3595-3614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116144

RESUMO

Introduction: Skin cutaneous melanoma is becoming more dangerous since it has a poor prognosis and is resistant to treatment. Previous research has shown that lncRNAs and fatty acid metabolism are essential for numerous biological activities. There are no studies on the relationship between fatty acid metabolism-Related lncRNAs and skin cutaneous melanoma. Methods and Results: In order to better understand the prognosis and survival of SKCM patients, we investigated the significance of lncRNAs related to fatty acid metabolism. In this work, we looked at the fatty acid metabolism genes and lncRNAs expression patterns. On the basis of lncRNAs associated with fatty acid metabolism, a nomogram and a prognosis prediction model were created. Based on the profile of lncRNAs associated with fatty acid metabolism, functional and pharmacological sensitivity investigations were also carried out. We also looked at the connection between immunotherapy and the immune response. The findings demonstrated that a risk score model based on 11 essential lncRNAs for fatty acid metabolism may discriminate between the clinical condition of SKCM and more accurately predict prognosis and survival. We conducted quantitative reverse transcription polymerase-chain reaction (RT-PCR) to verify the model. Conclusion: These important lncRNAs further showed a strong association with the tumor immune system, and these important lncRNAs also showed a connection between SKCM and chemotherapeutic treatment sensitivity. Our research strives to provide fresh viewpoints and innovative approaches to the treatment and administration of SKCM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...